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ABSTRACT 

 
This paper is the first part of a study of the active control of Bénard-
Marangoni convection of an infinite fluid layer heated from bellow with a 
constant heat flux. A linear proportional control method is used to perturb 
the lower boundary heat flux proportional to the local amplitude of a 
shadowgraph measurement. Linear stability analyses was used to establish 
that the onset of Bénard-Marangoni convection can be delayed using a 
linear proportional control method; furthermore, the active control 
parameters necessary for an established result can be obtained.  
Keywords: active control, melted material layer, convection. 

 
1. Introduction 

 Since Pearson [1] proved the 
phenomenon of surface tension-driven 
convection and Nield [2] the co-existence of 
buoyancy and surface tension-driven 
convection, many researchers studied these 
phenomena trying to establish clear connection 
between them. The Rayleigh-Bénard convection 
and Bénard-Marangoni convection do reinforce 
each other in the context of the assumption that 
the upper fluid boundary remains flat [2]. Even 
if this simplification was already questioned in 
several studies and Scriven and Sternling [3] 
concluded that the surface deformability may 
render the layer of fluid unstable under 
virtually all conditions, the flat upper boundary 
condition is an assumption which, used in the 
theoretical studies of Bénard-Marangoni 
convection, meets good verification [4-5]. This 
paper is also considering that the upper surface 
is flat. For small values of Rayleigh numbers 
(3.0e-7) and thin fluid layers, Bénard-
Marangoni convection is responsible for the 
pattern formation. If the experimental work 
questioned the stability of patterns which arise 
and the existence of an unique value for 
Marangoni number, numerical modeling tried 
and confirmed the experimental results: the 
energy stability theory [6], the linear stability 
analysis [1], [2] and bifurcation analysis [7-8]. 
This study is a linear stability analysis of a 
linear proportional method for the active 
control of Bénard-Marangoni convection. 
 

Rayleigh-Bénard convection and Bénard- 
Marangoni convection are not always desired 
phenomena in industrial applications. The delay 
or suppress of convection in Rayleigh-Bénard 
and Bénard-Marangoni convection has received 
a great attention in the last period [9÷10].
 Theoretical studies [11÷14] as well as 
experimental works [15÷16] analyzed different 
methods of control of Rayleigh-Bénard 
convection. The successful results of Tang and 
Bau [17] initiated the active control of 
Rayleigh-Bénard convection through the control 
of temperature or heat flux at the fluid lower 
boundary. According to the classification 
established by Gad-el-Hak [18], these are active 
reactive feedback control methods.  

This work is studying the active control 
of surface tension-induced convection of 
infinite horizontal fluid layers heated from 
bellow with a constant flux, situation which 
corresponds experimentally to a novel 
shadowgraphic system.  
 

2. Mathematical formulation 
 In a Boussinesq infinite fluid layer, the 
linear analysis leads to the stability equation 
[13], [19] for the perturbation temperature 
amplitude, Θ: 
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where a is the wave number, σ is the growth 
rate, R is the Rayleigh number, Pr is the Prandtl 
number and D is the notation for a/D ∂∂= . 
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Fig. 1.  Infinite fluid layer. 
The solution of equation (1) is: 
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where xi i=1…3, the roots of the characteristic 
equation 
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 The six boundary conditions necessary 
for finding the coefficients Ei and Oi  and, 
consequently, the perturbation temperature 
amplitude, Θ, are:  
• the no penetration condition, applied at 
upper and lower boundary,  
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• the no slip condition, applied at the lower 
boundary, 
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• the thermal transfer condition, applied at 
the upper boundary, 
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• the condition of surface-tension driven 
convection, 
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applied at the upper boundary. Bi is the Biot 
number, the Marangoni number 
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Ma , d is the fluid layer thickness, 

q  is the medium heat flux, kf is the fluid 
thermal diffusivity, Kf is the fluid thermal 
conductivity, ρ is the fluid density, ν is the 
fluid viscosity and γs is thermal coefficient of 
surface tension. 
• the sixth thermal boundary condition is an 
expression of the control method applied to the 

system, the heat flux proportional to the local 
shadowgraphic signal: 
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where gp is the proportional gain, , 0/ ρδρ  is 
the relative variation of the fluid density, ρ0 is 
the fluid density at temperature T0.  

The dimensionless form of equation (9), 
in terms of perturbation temperature amplitude 
is [14]: 
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where 
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Hg2 , d is the fluid layer 

height, H is the distance between the 
shadowgraph and convection layer, η is the 
ratio of the thermal diffusivities of the lower 
boundary layer and the fluid, Kl/Kf.  

The boundary conditions (4)÷(8) and (10) 
applied to equation (2), gives the condition for 
the onset of convection: 
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Considering the real part ℜ(σ) = 0.0 as 

marginal state, the whole branch of solution is 
found using continuation method [20]. 
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3. Simulation results 
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In all the numerical applications of this paper, 
we used the following values for Rayleigh, 
Prandtl and Biot numbers: Ra = 3.0e-7, Pr = 
100 and Bi = 0.001. For the ideal case of the 
active control of convection of an infinite fluid 
layer without lower boundary, the loss of 
stability through complex values of the growth 
rate couldn’t be find. 

 
 

Fig. 2.  Ma ⎯ a dependence for γ=20. 
Figure 2 shows the variation of 

Marangoni number as a function of the wave 
number for a proportional gain γ=20. The state 
corresponding to the minimum Marangoni 
number is the critical state.  

 
Fig. 3. Mac  ⎯ γ dependence. 

Figures 3÷4 show the variation of critical 
Marangoni number and critical wave number as 
a function of the proportional gain. We are 
concluding that the onset of convection can be 
moved toward higher values of Marangoni 
number increasing the proportional gain.  

Figure 4 suggests an increase of the 
wavenumber of the patterns that appear with the 
proportional gain and shows a positive gain at 
which the minimum wavenumber occurs.  

These results show that the critical state 
for the onset of Bénard-Marangoni convection 
of an infinite fluid layer can be controlled  
according to the controller proportional gain. 

 

ac 

Ma 

γ  
Fig. 4. Critical wave number ac as a 
function of the controller gain γ. 

Linear stability analysis was used to reproduce 
the experimental conditions found at Pearson 
[1], Koschmider and Switzer [21], Palmer and 
Berg [22] and these results are in good 
agreement with their experimental values. 
Taking a small Rayleigh number, the surface 
tension-driven convection curves obtained by 
Pearson [1] were compared with these results. 

Mac

ac a

 

Ma 

Mac Mac 

1.0 2.0 Bi=0.001

Fig. 5. Ma  ⎯ a dependence for Biot 
numbers Bi=0.001, 1 and 2. The variation 
of the minimum of these curves as a 
function of Biot number is also shown in 
the figure. 

a 

γ The Marangoni number ⎯ wave number 
dependence for Biot number 0.001, 1 and 2 as 
well as the evolution of the critical states 
(corresponding to the minimum Marangoni 
number), Fig. 5, shows a very good agreement.  
 

4. Conclusions 
Using the linear stability analysis, this paper 
studies the onset of convection of an infinite 
fluid layers heated from below with a constant 
heat flux. Considering microgravity conditions 
for the numerical simulation, Bénard-
Marangoni convection is the driven 
phenomenon of the pattern formation. 
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 For this case, the critical state can be 
shifted towards higher values of Marangoni 
number, which represents the task of active 
control and its applications. It was noticed that 
the system can loose stability only through real 
eigenvalues towards steady-state convection. 
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Controlul Activ al Convecţiei într-un Strat de Material Topit 
I. Convecţia într-un Strat Infinit 

 
REZUMAT 

 
Acestă lucrare este prima parte a unui studiu asupra convecţiei Bénard-
Marangoni într-un strat de fluid încălzit de un flux constant. O metodă de 
control linear proporţională este folosită pentru a perturba fluxul de 
căldură proporţional cu măsurătorile unui sistem de măsurare. S-a 
observat că iniţierea convecţiei Bénard-Marangoni poate fi întârziată 
folosind o metodă de control proporţională şi că parametrii de control 
necesari pentru obţinerea unui anumit rezultat pot fi stabiliţi. 

 
 

Aktive Steuerung der Konvektion in einem geschmolzenen materiellen 
Layer. I. Konvektion in einer endlosen flüssigen Schicht 

 
AUSZUG 

 
Dieses Papier ist das erste Teil einer Studie der aktiven Steuerung von Bénard-
Marangoni Konvektion einer endlosen flüssigen Schicht, die vom Gebrüll mit einem 
konstanten Hitzefluß geheizt wird. Eine lineare proportionale Steuermethode wird 
verwendet, um den niedrigeren Grenzhitzefluß zu stören, der zum lokalen Umfang 
eines Shadowgraphmaßes proportional ist. Lineare Stabilität Analysen wurden 
verwendet, um herzustellen, daß der Angriff der Bénard-Marangoni Konvektion mit 
einer linearen proportionalen Steuermethode verzögert werden kann; ausserdem 
können die aktiven Steuerparameter, die für ein hergestelltes Resultat notwendig 
sind, erhalten werden. 
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